Construction of Type III-C Rotaxane-Branched Dendrimers and Their Anion-Induced Dimension Modulation Feature.
Xu-Qing WangWei-Jian LiWei WangJin WenYing ZhangHongwei TanHai-Bo YangPublished in: Journal of the American Chemical Society (2019)
Starting from a novel rotaxane building block with dendrimer growth sites being located at both the wheel and axle component, we realized the successful construction of a new family of rotaxane-branched dendrimers, i.e., Type III-C rotaxane-branched dendrimers, up to fourth generation as a highly branched [46]rotaxane through a controllable divergent approach. In the resultant rotaxane-branched dendrimers, the wheel components of the rotaxane units are located on the branches as well as at the branching points, making them excellent candidates to mimic the amplified collective molecular motions. Thus, taking advantage of the urea moiety inserted into the axle components of the rotaxane units as the binding sites, the addition or removal of acetate anion as stimulus endows the individual rotaxane unit a switchable feature that lead to a collective expansion-contraction motion of the integrated rotaxane-branched dendrimers, thus allowing for the remarkable and reversible size modulation. Such a three-dimensional size switching feature makes Type III-C rotaxane-branched dendrimers a very promising platform toward the fabrication of novel dynamic smart materials.