Login / Signup

The Discovery of Data-Driven Temporal Dietary Patterns and a Validation of Their Description Using Energy and Time Cut-Offs.

Luotao LinJiaqi GuoYitao LiSaul B GelfandEdward J DelpAnindya BhadraElizabeth A RichardsErin HennessyHeather A Eicher-Miller
Published in: Nutrients (2022)
Data-driven temporal dietary patterning (TDP) methods were previously developed. The objectives were to create data-driven temporal dietary patterns and assess concurrent validity of energy and time cut-offs describing the data-driven TDPs by determining their relationships to BMI and waist circumference (WC). The first day 24-h dietary recall timing and amounts of energy for 17,915 U.S. adults of the National Health and Nutrition Examination Survey 2007-2016 were used to create clusters representing four TDPs using dynamic time warping and the kernel k-means clustering algorithm. Energy and time cut-offs were extracted from visualization of the data-derived TDPs and then applied to the data to find cut-off-derived TDPs. The strength of TDP relationships with BMI and WC were assessed using adjusted multivariate regression and compared. Both methods showed a cluster, representing a TDP with proportionally equivalent average energy consumed during three eating events/day, associated with significantly lower BMI and WC compared to the other three clusters that had one energy intake peak/day at 13:00, 18:00, and 19:00 (all p < 0.0001). Participant clusters of the methods were highly overlapped (>83%) and showed similar relationships with obesity. Data-driven TDP was validated using descriptive cut-offs and hold promise for obesity interventions and translation to dietary guidance.
Keyphrases