Login / Signup

Unrecognized Contributions of Dissolved Organic Matter Inducing Photodamages to the Decay of Extracellular DNA in Waters.

Xin ZhangJing LiMu-Cen YaoWen-Yuan FanChuan-Wang YangLi YuanGuo-Ping Sheng
Published in: Environmental science & technology (2020)
Extracellular DNA (eDNA), which is derived from lysis or secretion of cells, is ubiquitous in various environments and crucial for gene dissemination, bacterial metabolism, biofilm integrity, and aquatic monitoring. However, these processes are largely influenced by damage to eDNA. Photodamage to eDNA, one of the most important types of DNA damage in natural waters, thus far remains unclear. In particular, the roles of the ubiquitous dissolved organic matter (DOM) in this process have yet to be determined. In this study, eDNA photodamage, including both deoxynucleoside damage and strand breaks, proved to be significantly influenced by DOM. DOM competed with eDNA for photons to inhibit the direct photodamage of eDNA. Nevertheless, DOM was photosensitized to produce reactive oxygen species (ROS) (i.e., hydroxyl radicals (·OH) and singlet oxygen (1O2)) to enhance the indirect photodamage of eDNA. The ·OH induced damage to four deoxynucleosides and strand breaks, and the 1O2 substantially enhanced deoxyguanosine damage. The presence of DOM changed the main photodamage products of deoxynucleosides, additional oxidation products induced by ROS formed besides pyrimidine dimers caused by UV. Results indicate that DOM-mediated indirect photodamage contributed significantly to eDNA photodamage in most water bodies. This study revealed the previously unrecognized crucial role of DOM in the decay of eDNA in waters.
Keyphrases