Scavenger Receptor C1 Mediates Toxicity of Binary Toxin from Lysinibacillus sphaericus to Ag55 Cells.
Qi ZhangGang HuaLaramie SmithMichael J AdangPublished in: Toxins (2024)
Lysinibacillus sphaericus harboring Binary (BinA and BinB) toxins is highly toxic against Anopheles and Culex mosquito larvae. The Anopheles Ag55 cell line is a suitable model for investigating the mode of Bin toxin action. Based on the low-levels of α-glycosidase Agm3 mRNA in Ag55 cells and the absence of detectable Agm3 proteins, we hypothesized that a scavenger receptor could be mediating Bin cytotoxicity. Preliminary RNA interference knockdown of the expressed scavenger receptors, combined with Bin cytotoxicity assays, was conducted. The scavenger Receptor C1 (SCRC1) became the focus of this study, as a putative receptor for Bin toxins in Ag55 cells, and SCRBQ2 was selected as a negative control. Open reading frames encoding SCRC1 and SCRBQ2 were cloned and expressed in vitro, and polyclonal antibodies were prepared for immunological analyses. The RNAi silencing of SCRC1 and SCRBQ2 resulted in the successful knockdown of both SCRC1 and SCRBQ2 transcripts and protein levels. The cytolytic toxicity of Bin against Ag55 cells was severely reduced after the SCRC1-RNAi treatment. The phagocytic receptor protein SCRC1 mediates endocytosis of the Bin toxin into Ag55 cells, thereby facilitating its internal cytological activity. The results support a mechanism of the Bin toxin entering Ag55 cells, possibly via SCRC1-mediated endocytosis, and encourage investigations into how Bin is transferred from its bound form on the midgut epithelial cells into the epithelial endocytic system.