Login / Signup

Postsynthetic Metal Exchange in a Metal-Organic Framework Assembled from Co(III) Diphosphine Pincer Complexes.

Abebu A KassiePu DuanEric T McClureKlaus Schmidt-RohrPatrick M WoodwardCasey R Wade
Published in: Inorganic chemistry (2019)
A Zr metal-organic framework (MOF) 1-CoCl3 has been synthesized by solvothermal reaction of ZrCl4 with a carboxylic acid-functionalized CoIII-PNNNP pincer complex H4(L-CoCl3) ([L-CoCl3]4- = [(2,6-(NHPAr2)2C6H3)CoCl3]4-, Ar = p-C6H4CO2-). The structure of 1-CoCl3 has been determined by X-ray powder diffraction and exhibits a csq topology that differs from previously reported ftw-net Zr MOFs assembled from related PdII- and PtII-PNNNP pincer complexes. The Co-PNNNP pincer species readily demetallate upon reduction of CoIII to CoII, allowing for transmetalation with late second and third row transition metals in both the homogeneous complex and 1-CoCl3. Reaction of 1-CoCl3 with [Rh(nbd)Cl]2 (nbd = 2,5-nobornadiene) results in complete Rh/Co metal exchange at the supported diphosphine pincer complexes to generate 1-RhCl, which has been inaccessible by direct solvothermal synthesis. Treating 1-CoCl3 with PtCl2(SMe2)2 in the presence of the mild reductant NEt3 resulted in nearly complete Co substitution by Pt. In addition, a mixed metal pincer MOF, 1-PtRh, was generated by sequential substitution of Co with Pt followed by Rh.
Keyphrases
  • metal organic framework
  • magnetic resonance imaging
  • magnetic resonance
  • pet imaging
  • mass spectrometry
  • human health
  • contrast enhanced
  • liquid chromatography