Login / Signup

Efficient Solar-Driven Water Harvesting from Arid Air with Metal-Organic Frameworks Modified by Hygroscopic Salt.

Jiaxing XuTingxian LiJingwei ChaoSi WuTaisen YanWenchen LiBiye CaoRuzhu Wang
Published in: Angewandte Chemie (International ed. in English) (2020)
Freshwater scarcity is a global challenge threatening human survival, especially for people living in arid regions. Sorption-based atmospheric water harvesting (AWH) is an appealing way to solve this problem. However, the state-of-the-art AWH technologies have poor water harvesting performance in arid climates owing to the low water sorption capacity of common sorbents under low humidity conditions. We report a high-performance composite sorbent for efficient water harvesting from arid air by confining hygroscopic salt in a metal-organic framework matrix (LiCl@MIL-101(Cr)). The composite sorbent shows 0.77 g g-1 water sorption capacity at 1.2 kPa vapor pressure (30 % relative humidity at 30 °C) by integrating the multi-step sorption processes of salt chemisorption, deliquescence, and solution absorption. A highly efficient AWH prototype is demonstrated with LiCl@MIL-101(Cr) that can enable the harvesting of 0.45-0.7 kg water per kilogram of material under laboratory and outdoor ambient conditions powered by natural sunlight without optical concentration and additional energy input.
Keyphrases