Assessment of Antidepressant Effect of the Aerial Parts of Micromeria myrtifolia Boiss. & Hohen on Mice.
Esra Küpeli AkkolFatma Tuğçe Gürağaç DereliMert IlhanPublished in: Molecules (Basel, Switzerland) (2019)
The currently available antidepressant agents necessitate the development of newer alternatives because of their serious adverse effects and costs. Traditional medicinal knowledge is likely the key that opens the door to discover new medicines. In Turkish folk medicine, the infusion prepared from aerial parts of Micromeria myrtifolia Boiss. & Hohen is used as pleasure and medicinal tea for its relaxing action. The present research was conceived to confirm the antidepressant's potential of this traditional medicinal plant. In this process, first of all, the collected and shade-dried aerial parts of M. myrtifolia were powdered and then, extracted using solvents with different polarity as follows; n-hexane, ethyl acetate (EtOAc), and methanol (MeOH). The antidepressant activity of the extracts was evaluated by using several in vivo and in vitro experimental models of depression. When the data obtained from the control and experimental groups were compared, it was determined that the MeOH extract was the most active. The active components of this extract were isolated and identified utilizing various chromatographic separation techniques. The MeOH extract was applied to reversed phase (RP-18) column chromatography to obtain five main fractions and they were tested on antidepressant activity models. The isolated compounds from the obtained fractions were elucidated as rosmarinic acid (1), myricetin (2), apigenin (3), and naringenin (4) which were assumed to be responsible for the antidepressant activity of the aerial parts. According to the results, rosmarinic acid, myricetin, apigenin, and naringenin showed statistically significant activity on forced swimming test and tetrabenazine-induced ptosis models, whereas only rosmarinic acid showed statistically significant activity on the tail suspension test. Apigenin displayed the highest inhibitory activity on MAO A and B enzymes. Studies in the future should be performed to investigate the antidepressant activity mechanism of these natural compounds. The current research could be an important step in the development of the new agents that can be used in the treatment of depression.
Keyphrases
- major depressive disorder
- oxidative stress
- healthcare
- machine learning
- bipolar disorder
- liquid chromatography
- adipose tissue
- ionic liquid
- mass spectrometry
- skeletal muscle
- endothelial cells
- climate change
- big data
- artificial intelligence
- high performance liquid chromatography
- diabetic rats
- current status
- deep learning