Physical science has undergone an evolutional transition in research focus from solid bulks to surfaces, culminating in numerous prominent achievements. Currently, it is experiencing a new exploratory phase-interfacial science. Many a technology with a tremendous impact is closely associated with a functional interface which delineates the boundary between disparate materials or phases, evokes complexities that surpass its pristine comprising surfaces, and thereby unveils a plethora of distinctive properties. Such an interface may generate completely new or significantly enhanced properties. These specific properties are closely related to the interfacial states formed at the interfaces. Therefore, establishing a quantitative relationship between the interfacial states and their functionalities has become a key scientific issue in interfacial science. However, interfacial science also faces several challenges such as invisibility in characterization, inaccuracy in calculation, and difficulty in precise construction. To tackle these challenges, people must develop new strategies for precise detection, accurate computation, and meticulous construction of functional interfaces. Such strategies are anticipated to provide a comprehensive toolbox tailored for future interfacial science explorations and thereby lay a solid scientific foundation for several key future technologies.