Self-Induced and Progressive Photo-Oxidation of Organophosphonic Acid Grafted Titanium Dioxide.
Nick GysBram PawlakKristof MarcoenGunter ReekmansLeticia F VelascoRui AnKenny WynsKitty BaertKaimin ZhangLéon Luntadila LufungulaAlessandra PirasLaurens SiemonsBart MichielsenSabine Van DoorslaerFrank BlockhuysTom HauffmanPeter AdriaensensSteven MullensVera MeynenPublished in: ChemPlusChem (2023)
While synthesis-properties-performance correlations are being studied for organophosphonic acid grafted TiO 2 , their stability and the impact of the exposure conditions on possible changes in the interfacial surface chemistry remain unexplored. Here, the impact of different ageing conditions on the evolution of the surface properties of propyl- and 3-aminopropylphosphonic acid grafted mesoporous TiO 2 over a period of 2 years is reported, using solid-state 31 P and 13 C NMR, ToF-SIMS and EPR as main techniques. In humid conditions under ambient light exposure, PA grafted TiO 2 surfaces initiate and facilitate photo-induced oxidative reactions, resulting in the formation of phosphate species and degradation of the grafted organic group with a loss of carbon content ranging from 40 to 60 wt %. By revealing its mechanism, solutions were provided to prevent degradation. This work provides valuable insights for the broad community in choosing optimal exposure/storage conditions that extend the lifetime and improve the materials' performance, positively impacting sustainability.