Login / Signup

Facile incorporation of non-canonical heme ligands in myoglobin through chemical protein synthesis.

Kewei YiPeng WangChunmao He
Published in: Bioorganic & medicinal chemistry (2024)
The incorporation of non-canonical amino acids (ncAAs) into the metal coordination environments of proteins has endowed metalloproteins with enhanced properties and novel activities, particularly in hemoproteins. In this work, we disclose a scalable synthetic strategy that enables the production of myoglobin (Mb) variants with non-canonical heme ligands, i.e., HoCys and f4Tyr. The ncAA-containing Mb* variants (with H64V/V68A mutations) were obtained through two consecutive native chemical ligations and a subsequent desulfurization step, with overall isolated yield up to 28.6 % in over 10-milligram scales. After refolding and heme b cofactor reconstitution, the synthetic Mb* variants showed typical electronic absorption bands. When subjected to the catalysis of the cyclopropanation of styrene, both synthetic variants, however, were not as competent as the His-ligated Mb*. We envisioned that the synthetic method reported herein would be useful for incorporating a variety of ncAAs with diverse structures and properties into Mb for varied purposes.
Keyphrases
  • copy number
  • amino acid
  • high resolution
  • quantum dots
  • mass spectrometry
  • gold nanoparticles
  • metal organic framework