Login / Signup

Plasmon-Enhanced Fluorescence of Carbon Nanodots in Gold Nanoslit Cavities.

Bhawna BagraWendi ZhangZheng ZengTaylor MabeJianjun Wei
Published in: Langmuir : the ACS journal of surfaces and colloids (2019)
Carbon nanodots (CNDs) are featured with a wide range of light absorption and excitation-dependent fluorescence. The emission enhancement of CNDs is of great interest for the development of nanophotonics. Although the phenomenon of plasmon-enhanced fluorescence for quantum dots and molecular dyes has been well investigated, rarely has it been reported for CNDs. In this work, a series of plasmonic nanoslit designs were fabricated and utilized for immobilization of CNDs in nanoslits and examination of the best match for plasmonic fluorescence enhancement of CNDs. In concert, to better understand the plasmonic effect on the enhancement, the surface optical field is measured with or without CND immobilization using a hyperspectral imaging system as a comparison, and a semianalytical model is conducted for a quantitative analysis of surface plasmon generation under the plane-wave illumination. Both the fluorescence and surface reflection light intensity enhancement are demonstrated as a function of nanoslit width and are maximized at the 100 nm nanoslit width. The analysis of surface plasmon-exciton coupling of CNDs in the nanoslit area suggests that the enhancement is primarily due to plasmonic light trapping for increased electromagnetic field and plasmon-induced resonance energy transfer. This study suggests that incorporating CNDs in the plasmonic nanoslits may provide a largely enhanced CND-based photoemission system for optical applications.
Keyphrases
  • energy transfer
  • quantum dots
  • high resolution
  • high speed
  • photodynamic therapy
  • oxidative stress
  • stress induced