Disruptive Strategy To Fabricate Three-Dimensional Ultrawide Interlayer Porous Carbon Framework-Supported Prussian Blue Nanocubes: A Carrier for NiFe-Layered Double-Hydroxide toward Oxygen Evolution.
Xuanda LongBowen WangXinxin ZhangXichen MaoJie LiZiyu LuoDong QianJunhua LiJinlong LiuPublished in: Inorganic chemistry (2022)
We, for the first time, offer a unique and disruptive strategy to prepare N-doped three-dimensional porous carbon framework-supported well-defined Fe 4 [Fe(CN) 6 ] 3 nanocubes (indicated as PB@N-PCFs). The carbon frameworks hold an ultrawide interlayer spacing of 0.385-0.402 nm for the (002) planes of graphite and ultrahigh graphitization. Furthermore, PB@N-PCFs are used as a carrier to grow NiFe-layered-double-hydroxide nanosheet arrays (denoted as NiFe-LDH/PB@N-PCFs) in situ, where the interlayer spacing for the (002) planes of graphite can be expanded as high as 0.457 nm in the carbon frameworks. Moreover, NiFe-LDH/PB@N-PCFs shows excellent electrocatalytic performance toward oxygen evolution in terms of activity, kinetics, and durability, elegantly rivaling the state-of-the-art RuO 2 . More profoundly, after 3000 cycle cyclic voltammetry scans, NiFe-LDH/PB@N-PCFs still display far more desirable activity with respect to initial NiFe-LDH/PB@N-PCFs. We believe that the PB@N-PCFs and PB@N-PCFs-based composites with ultrahighly graphitized and large interlayer spacing N-PCFs can find more places in electrochemistry-related applications such as Na/K-ion batteries, electrocatalysis, and electrochemical sensors.