Login / Signup

Understanding natural selection and similarity: Convergent, parallel and repeated evolution.

José Cerca
Published in: Molecular ecology (2023)
Parallel and convergent evolution offer some of the most compelling evidence for the significance of natural selection in evolution, as the emergence of similar adaptive solutions is unlikely to occur by random chance alone. However, these terms are often employed inconsistently, leading to misinterpretation and confusion, and recently proposed definitions have unintentionally diminished the emphasis on the evolution of similar adaptive solutions. Here, I examine various conceptual frameworks and definitions related to parallel and convergent evolution and propose a consolidated framework that enhances our comprehension of these evolutionary patterns. The primary aim of this framework is to harmonize the concepts of parallel and convergent evolution together with natural selection and the idea of similarity. Both concepts involve the evolution of similar adaptive solutions as a result of environmental challenges. The distinction lies in ancestral phenotypes. Parallel evolution takes place when the ancestral phenotypes (before selection) of the lineages are similar. Convergent evolution happens when the lineages have distinct ancestral phenotypes (before selection). Because an ancestral-based distinction will inevitably lead to cases where uncertainty in the distinction may arise, the framework includes a general term, repeated evolution, which can be used as a term applying to the evolution of similar phenotypes and genotypes as well as similar responses to environmental pressures. Based on the argument that genetic similarity may frequently arise without selection, the framework posits that the similarity of genetic sequences is not of great interest unless linked to the actions of natural selection or to the origins (mutation, standing genetic variation, gene flow) and locations of the similar sequences.
Keyphrases
  • preterm infants
  • gene expression
  • risk assessment
  • copy number
  • dna methylation
  • transcription factor
  • preterm birth