Flexible, High-Power Density, Wearable Thermoelectric Nanogenerator and Self-Powered Temperature Sensor.
Rui FengFei TangNing ZhangXiaohao WangPublished in: ACS applied materials & interfaces (2019)
We propose a flexible and wearable thermoelectric nanogenerator (FTEG) made from Bi2Te3, which allows high voltage and output power density. The proposed FTEG works as a thermopile with the end-to-end connection of 126 thermoelectric legs, and which is fabricated through magnetron sputtering Cu conductor on polyethylene terephthalate film. Bi, Te, Sb, and Se alloys are used to prepare thermoelectric materials by doping in a fixed proportion and zone melting, and nickel plating on the surface mitigates the deterioration of thermoelectric properties caused by the diffusion of Cu atoms or Cu+ ions. The thermoelectric figure of merit is stable and maintained above 0.7, up to 1.02. More flexibility is allowed by employing double sinusoidal serpentine connecting wires, and no significant property changes are observed even after being folded 200 times. When the temperature difference reaches 50 K, the output voltage of the FTEG will be no less than 520 mV, and the power density will reach 11.14 mW·cm-2. By integration of a low-power, low-threshold voltage boost circuit on the back end of the FTEG, the electronic watch with a liquid crystal display screen can be easily powered to work properly. Furthermore, the FTEG is temperature-sensitive and, thus, can be used for temperature measurement with a resolution of 0.5 K. This work may have important prospects in flexible wearable physical sensors and individualized medical care.