Ultrafast Single-Crystal-to-Single-Crystal Transformation from Metal-Organic Framework to 2D Hydroxide.
Wenjie WangYao WangRunze HeXiaozheng WangZheng ShenXiaocang HanAlicja BachmatiukWen WenMark H RümmeliPan LiuMengqi ZengLei FuPublished in: Advanced materials (Deerfield Beach, Fla.) (2021)
Single-crystal-to-single-crystal (SCSC) transformations have received considerable interest in crystal engineering, owing to providing a key platform for creating new materials. However, because of the limited tolerance of chemical bonds against the lattice strains, it is challenging to maintain the crystallinity when the structure changes dramatically. Here, a peculiar SCSC transformation from organic crystals to inorganic crystals, simultaneously achieving a drastic change in structure, connectivity, and dimension, is reported. As a demonstration, after reacting with liquid gallium, zeolitic imidazolate framework-8 (ZIF-8) can easily transform to 2D hydroxide single crystals. Interestingly, long-range ordered metallic atoms of hydroxide inherited from the ordered atomic arrangement of ZIF-8, but the connectivity is distinct. With good universality and extensibility, this transformation vastly expands the research scope of the SCSC transformations and provides a novel pathway for the synthesis of crystalline materials.