Disinfecting drinking water in a reliable, sustainable, and affordable manner is a great challenge, especially for water contaminated with pathogenic microbes, and traditional water disinfection strategies still suffer from biofouling, irreversible depletion of disinfectants, and energy consumption. In this study, we developed biomimetic and superelastic skeletal-structured silica nanofibrous aerogels (SNAs) with rechargeable bactericidal and antifouling property via the combination of electrospun silica nanofibers and a functional Si-O-Si bonding network. The premise for our design is that the Si-O-Si network comprising rechargeable N-halamine moieties can provide the aerogels with structural stability yet durable bactericidal activity. The resulting aerogels exhibit intriguing properties of high porosity, superhydrophilicity, superelasticity, rechargeable chlorination capability (>4800 ppm), and exceptional bactericidal activity (99.9999%), enabling the aerogels to effectively disinfect the bacteria-contaminated water with ultrahigh flux (57 600 L m-2 h-1) and antifouling function. The synthesis of the SNAs opens pathways for exploring antibacterial and antifouling materials in a renewable and nanofibrous form.