Molecular mechanism of voltage-dependent potentiation of KCNH potassium channels.
Gucan DaiWilliam N ZagottaPublished in: eLife (2017)
EAG-like (ELK) voltage-gated potassium channels are abundantly expressed in the brain. These channels exhibit a behavior called voltage-dependent potentiation (VDP), which appears to be a specialization to dampen the hyperexitability of neurons. VDP manifests as a potentiation of current amplitude, hyperpolarizing shift in voltage sensitivity, and slowing of deactivation in response to a depolarizing prepulse. Here we show that VDP of D. rerio ELK channels involves the structural interaction between the intracellular N-terminal eag domain and C-terminal CNBHD. Combining transition metal ion FRET, patch-clamp fluorometry, and incorporation of a fluorescent noncanonical amino acid, we show that there is a rearrangement in the eag domain-CNBHD interaction with the kinetics, voltage-dependence, and ATP-dependence of VDP. We propose that the activation of ELK channels involves a slow open-state dependent rearrangement of the direct interaction between the eag domain and CNBHD, which stabilizes the opening of the channel.