Login / Signup

Climate-assisted persistence of tropical fish vagrants in temperate marine ecosystems.

Laura GajdzikThomas M DeCarloAdam KoziolMahsa Mousavi-DerazmahallehMegan CoghlanMatthew W PowerMichael BunceDavid V FaircloughMichael J TraversGlenn I MooreJoseph D DiBattista
Published in: Communications biology (2021)
Rising temperatures and extreme climate events are propelling tropical species into temperate marine ecosystems, but not all species can persist. Here, we used the heatwave-driven expatriation of tropical Black Rabbitfish (Siganus fuscescens) to the temperate environments of Western Australia to assess the ecological and evolutionary mechanisms that may entail their persistence. Population genomic assays for this rabbitfish indicated little genetic differentiation between tropical residents and vagrants to temperate environments due to high migration rates, which were likely enhanced by the marine heatwave. DNA metabarcoding revealed a diverse diet for this species based on phytoplankton and algae, as well as an ability to feed on regional resources, including kelp. Irrespective of future climate scenarios, these macroalgae-consuming vagrants may self-recruit in temperate environments and further expand their geographic range by the year 2100. This expansion may compromise the health of the kelp forests that form Australia's Great Southern Reef. Overall, our study demonstrates that projected favourable climate conditions, continued large-scale genetic connectivity between populations, and diet versatility are key for tropical range-shifting fish to establish in temperate ecosystems.
Keyphrases
  • climate change
  • human health
  • genome wide
  • physical activity
  • public health
  • weight loss
  • genetic diversity
  • mental health
  • gene expression
  • single cell
  • high throughput
  • cell free
  • social media
  • health information