Simple and Efficient Acceptor-Donor-Acceptor-Type Non-fullerene Acceptors for a BODIPY-Thiophene-Backboned Polymer Donor for High-Performance Indoor Photovoltaics.
Raman RajagopalanShyam Shankar SNatarajan BalasubramaniyanGanesh D SharmaPublished in: ACS applied materials & interfaces (2023)
Herein, simple acceptor-donor-acceptor (A-D-A)-type small molecules denoted as DICTF and DRCTF with modification in terminal units were synthesized and used as electron acceptors. With the tuning of the electron-withdrawing units in electron acceptors, their photovoltaic properties were investigated when combined with low-band-gap BODIPY-thiophene-backboned donor material, named P(BdP-HT). The P(BdP-HT):DICTF-based organic solar cells (OSCs) displayed excellent efficiency of around 11.94%, which is superior to the P(BdP-HT):DRCTF counterpart (8.78%). Although the open-circuit voltage ( V OC ) of the P(BdP-HT):DRCTF-based OSC is greater than that for the P(BdP-HT):DICTF counterpart, the rise in the short-circuit current density ( J SC ) may be attributed to the fact that the P(BdP-HT):DICTF blend displayed impressive panchromatic absorption compared to P(BdP-HT):DRCTF. The improved fill factor (FF) is responsible for the balanced transport of charges in the P(BdP-HT):DICTF-based device. Moreover, the P(BdP-HT):DRCTF- and P(BdP-HT):DICTF-based OSCs showed 17.68 and 21.84%, respectively, under indoor illumination (1000 lx). To the best of our observation, this might be the first report on BODIPY-based donors with power conversion efficiency (PCE) of 21.84% under indoor illumination conditions.