Combining ultra-high-performance liquid chromatography quadruple exactive orbitrap mass spectrometry with chemometrics to identify and verify the blood-activating components of hawthorn.
Fei SunXiangqin WuYue QiYongqi ZhongLu ZengKaiyang WangShengwang LiangPublished in: Journal of separation science (2022)
Hawthorn, one of the widely-used Chinese herbal medicines, has been used to treat blood stasis syndrome in the clinic, but its blood-activating components are unclear. This study combined the ultra-high-performance liquid chromatography-quadruple exactive-orbitrap mass spectrometry with chemometrics to identify the blood-activating components of hawthorn. Different polar fractions of hawthorn aqueous extracts were extracted and mixed to prepare 14 samples. The contents of 25 chemical components for 14 samples were determined by the proposed quantitative method which was validated in terms of linearity, precision, stability, repeatability, and recovery, while the blood-activating effect was evaluated by measuring the whole blood viscosity, plasma viscosity, and plasma fibrinogen levels. Then the partial least squares model was established on the spectrum-effect relationship. The result showed that vitexin-2″-O-rhamnoside, rutin, citric acid, malic acid, gallic acid, and fumaric acid could reduce the whole blood viscosity, plasma viscosity, and plasma fibrinogen levels in blood stasis model rats, and these components were the blood-activating components of hawthorn. This study provided a scientific basis for clarifying the blood-activating components of hawthorn, and the spectrum-effect approach proved to be an effective approach to discovering the bioactive components of Chinese herbal medicines.