Synthesis and DNase I inhibitory properties of some 4-thiazolidinone derivatives.
Ana KolarevićBudimir S IlićGordana KocićZdravko DžambaskiAndrija ŠmelcerovićBojan P BondžićPublished in: Journal of cellular biochemistry (2018)
Twelve new thiazolidinones were synthesized and, together with 41 previously synthesized thiazolidinones, evaluated for inhibitory activity against deoxyribonuclease I (DNase I) in vitro. Ten compounds inhibited commercial bovine pancreatic DNase I with an IC50 below 200 μM and showed to be more potent DNase I inhibitors than crystal violet (IC50 = 365.90 ± 47.33 μM), used as a positive control. Moreover, three compounds were active against DNase I in rat liver homogenate, having an IC50 below 200 μM. (3-Methyl-1,4-dioxothiazolidin-2-ylidene)-N-(2-phenylethyl)ethanamide (41) exhibited the most potent DNase I inhibition against both commercial and rat liver DNase I with IC50 values of 115.96 ± 11.70 and 151.36 ± 15.85 μM, respectively. Site Finder and molecular docking defined the thiazolidinones interactions with the most important catalytic residues of DNase I, including the H-acceptor interaction with residues His 134 and His 252 and/or H-donor interaction with residues Glu 39 and Asp 168. The three most active compounds against both commercial and rat liver DNase I (31, 38, and 41) exhibited favorable physico-chemical, pharmacokinetic, and toxicological properties. These observations could be utilized to guide the rational design and optimization of novel thiazolidinone inhibitors. Thiazolidinones as novel DNase I inhibitors could have potential therapeutic applications due to the significant involvement of DNase I in the pathophysiology of many disease conditions.
Keyphrases