Login / Signup

Monascus pigment rubropunctatin derivative FZU-H reduces Aβ(1-42)-induced neurotoxicity in Neuro-2A cells.

Yunquan ZhengQisheng PanLiuda MoWenyi ZhangYunjian DuanChengqun ChenHaijun ChenYanghao GuoXianai ShiJianmin Yang
Published in: RSC advances (2018)
Alzheimer's disease (AD) is an extremely complex disease, characterized by several pathological features including oxidative stress and amyloid-β (Aβ) aggregation. Blockage of Aβ-induced injury has emerged as a potential therapeutic approach for AD. Our previous efforts resulted in the discovery of Monascus pigment rubropunctatin derivative FZU-H with potential neuroprotective effects. This novel lead compound significantly diminishes toxicity induced by Aβ(1-42) in Neuro-2A cells. Our further mechanism investigation revealed that FZU-H inhibited Aβ(1-42)-induced caspase-3 protein activation and the loss of mitochondrial membrane potential. In addition, treatment of FZU-H was proven to attenuate Aβ(1-42)-induced cell redox imbalance and Tau hyperphosphorylation which caused by okadaic acid in Neuro-2A cells. These results indicated that FZU-H shows promising neuroprotective effects for AD.
Keyphrases
  • induced apoptosis
  • oxidative stress
  • diabetic rats
  • high glucose
  • cell cycle arrest
  • signaling pathway
  • single cell
  • small molecule
  • stem cells
  • dna damage
  • high throughput
  • cell therapy
  • protein protein