The Effect of Clozapine and Novel Glutamate Modulator JNJ-46356479 on Nitrosative Stress in a Postnatal Murine Ketamine Model of Schizophrenia.
Nina TrederAlbert Martínez-PinteñoNatalia RodríguezNéstor ArbeloSantiago MaderoMarta GómezClemente Garcia-RizoSergi MasPatricia GassóEduard ParelladaConstanza MorénPublished in: International journal of molecular sciences (2023)
Schizophrenia (SZ) is a heterogeneous mental disorder, affecting ~1% of the worldwide population. One of the main pathophysiological theories of SZ is the imbalance of excitatory glutamatergic pyramidal neurons and inhibitory GABAergic interneurons, involving N-methyl-D-aspartate receptors (NMDAr). This may lead to local glutamate storms coupled with excessive dendritic pruning and subsequent cellular stress, including nitrosative stress, during a critical period of neurodevelopment, such as adolescence. Nitrosative stress is mediated by nitric oxide (NO), which is released by NO synthases (NOS) and has emerged as a key signaling molecule implicated in SZ. Regarding glutamatergic models of SZ, the administration of NMDAr antagonists has been found to increase NOS levels in the prefrontal cortex (PFC) and ventral hippocampus (HPC). We hypothesized that suboptimal NOS function in adolescence could be a target for early treatments, including clozapine (CLZ) and the novel metabotropic glutamate receptor modulator JNJ-46356479 (JNJ). We analyzed the protein levels of NOS isoforms in adult PFC and HPC of a postnatal ketamine induced murine model of SZ receiving CLZ or JNJ during adolescence by western blot. Endothelial NOS and neuronal NOS increased under ketamine administration in PFC and decreased in CLZ or JNJ treatments. The same trends were found in the HPC in neuronal NOS. In contrast, inducible NOS was increased under JNJ treatment with respect to ketamine induction in the HPC, and the same trends were found in the PFC. Taken together, our findings suggest a misbalance of the NOS system following NMDAr antagonist administration, which was then modulated under early CLZ and JNJ treatments.
Keyphrases
- nitric oxide synthase
- nitric oxide
- prefrontal cortex
- depressive symptoms
- pain management
- bipolar disorder
- spinal cord
- stress induced
- hydrogen peroxide
- magnetic resonance
- south africa
- endothelial cells
- heat stress
- body mass index
- cerebral ischemia
- young adults
- chronic pain
- high glucose
- computed tomography
- subarachnoid hemorrhage
- diabetic rats