Login / Signup

Validation of Alogo Move Pro: A GPS-Based Inertial Measurement Unit for the Objective Examination of Gait and Jumping in Horses.

Kévin Cédric GuyardStéphane MontavonJonathan BertolacciniMichel Deriaz
Published in: Sensors (Basel, Switzerland) (2023)
Quantitative information on how well a horse clears a jump has great potential to support the rider in improving the horse's jumping performance. This study investigated the validation of a GPS-based inertial measurement unit, namely Alogo Move Pro, compared with a traditional optical motion capture system. Accuracy and precision of the three jumping characteristics of maximum height (Zmax), stride/jump length (lhorz), and mean horizontal speed (vhorz) were compared. Eleven horse-rider pairs repeated two identical jumps (an upright and an oxer fence) several times ( n = 6 to 10) at different heights in a 20 × 60 m tent arena. The ground was a fiber sand surface. The 24 OMC (Oqus 7+, Qualisys) cameras were rigged on aluminum rails suspended 3 m above the ground. The Alogo sensor was placed in a pocket on the protective plate of the saddle girth. Reflective markers placed on and around the Alogo sensor were used to define a rigid body for kinematic analysis. The Alogo sensor data were collected and processed using the Alogo proprietary software; stride-matched OMC data were collected using Qualisys Track Manager and post-processed in Python. Residual analysis and Bland-Altman plots were performed in Python. The Alogo sensor provided measures with relative accuracy in the range of 10.5-20.7% for stride segments and 5.5-29.2% for jump segments. Regarding relative precision, we obtained values in the range of 6.3-14.5% for stride segments and 2.8-18.2% for jump segments. These accuracy differences were deemed good under field study conditions where GPS signal strength might have been suboptimal.
Keyphrases
  • body mass index
  • high resolution
  • electronic health record
  • data analysis
  • big data
  • healthcare
  • risk assessment
  • single molecule
  • health information
  • deep learning