Source Identification Analysis of Lead in the Blood of Japanese Children by Stable Isotope Analysis.
Mai TakagiAtsushi TanakaHaruhiko SeyamaAyumi UematsuMasayuki KajiJun YoshinagaPublished in: International journal of environmental research and public health (2020)
Considering the negative effect of lead (Pb) on children's neurodevelopment, Pb exposure should be minimized to the lowest extent possible, though the blood Pb (BPb) concentrations in Japanese children are among the lowest in the world. To identify the sources of Pb in blood, isotope ratios (IRs: 207Pb/206Pb and 208Pb/206Pb) of Pb (PbIR) in whole blood from eight Japanese children were measured by multi-collector ICP mass spectrometry. Further, samples of house dust, soil, duplicate diet, and tobacco, collected from home environments, were also measured and were compared with PbIR of blood case by case. The relative contribution of Pb in the home environment to BPb were estimated by linear programming (finding an optimal solution which satisfy the combination of IRs and intakes from various sources) when appropriate. Source apportionment for three children could be estimated, and contributions of diet, soil, and house dust were 19-34%, 0-55%, and 20-76%, respectively. PbIR for the remaining five children also suggested that non-dietary sources also contributed to Pb exposure, though quantitative contributions could not be estimated. Non-dietary sources such as soil, house dust, and passive tobacco smoke are also important contributors to Pb exposure for Japanese children based on PbIR results.