The nematode effector calreticulin competes with the high mobility group protein OsHMGB1 for binding to the rice calmodulin-like protein OsCML31 to enhance rice susceptibility to Meloidogyne graminicola.
Jing LiuJiaqian ZhangYing WeiWen SuWei LiBing WangDeliang PengGodelieve GheysenHuan PengLiangying DaiPublished in: Plant, cell & environment (2024)
The root-knot nematode Meloidogyne graminicola secretes effectors into rice tissues to modulate host immunity. Here, we characterised MgCRT1, a calreticulin protein of M. graminicola, and identified its target in the plant. In situ hybridisation showed MgCRT1 mRNA accumulating in the subventral oesophageal gland in J2 nematodes. Immunolocalization indicated MgCRT1 localises in the giant cells during parasitism. Host-induced gene silencing of MgCRT1 reduced the infection ability of M. graminicola, while over-expressing MgCRT1 enhanced rice susceptibility to M. graminicola. A yeast two-hybrid approach identified the calmodulin-like protein OsCML31 as an interactor of MgCRT1. OsCML31 interacts with the high mobility group protein OsHMGB1 which is a conserved DNA binding protein. Knockout of OsCML31 or overexpression of OsHMGB1 in rice results in enhanced susceptibility to M. graminicola. In contrast, overexpression of OsCML31 or knockout of OsHMGB1 in rice decreases susceptibility to M. graminicola. The GST-pulldown and luciferase complementation imaging assay showed that MgCRT1 decreases the interaction of OsCML31 and OsHMGB1 in a competitive manner. In conclusion, when M. graminicola infects rice and secretes MgCRT1 into rice, MgCRT1 interacts with OsCML31 and decreases the association of OsCML31 with OsHMGB1, resulting in the release of OsHMGB1 to enhance rice susceptibility.