Login / Signup

A native parasitic plant and soil microorganisms facilitate a native plant co-occurrence with an invasive plant.

Jun-Min LiAyub M O OduorFeihai YuMing Dong
Published in: Ecology and evolution (2019)
Invasive plants often interact with antagonists that include native parasitic plants and pathogenic soil microbes, which may reduce fitness of the invaders. However, to date, most of the studies on the ecological consequences of antagonistic interactions between invasive plants and the resident biota focused only on pairwise interactions. A full understanding of invasion dynamics requires studies that test the effects of multiple antagonists on fitness of invasive plants and co-occurring native plants. Here, we used an invasive plant Mikania micrantha, a co-occurring native plant Coix lacryma-jobi, and a native holoparasitic plant Cuscuta campestris to test whether parasitism on M. micrantha interacts with soil fungi and bacteria to reduce fitness of the invader and promote growth of the co-occurring native plant. In a factorial setup, M. micrantha and C. lacryma-jobi were grown together in pots in the presence versus absence of parasitism on M. micrantha by C. campestris and in the presence versus absence of full complements of soil bacteria and fungi. Fungicide and bactericide were used to suppress soil fungi and bacteria, respectively. Findings show that heavy parasitism by C. campestris caused the greatest reduction in M. micrantha biomass when soil fungi and bacteria were suppressed. In contrast, the co-occurring native plant C. lacryma-jobi experienced the greatest increase in biomass when grown with heavily parasitized M. micrantha and in the presence of a full complement of soil fungi and bacteria. Taken together, our results suggest that selective parasitism on susceptible invasive plants by native parasitic plants and soil microorganisms may diminish competitive ability of invasive plants and facilitate native plant coexistence with invasive plants.
Keyphrases
  • plant growth
  • physical activity
  • cell wall
  • body composition
  • magnetic resonance
  • wastewater treatment
  • climate change
  • risk assessment