Synthesis of piperidines and pyridine from furfural over a surface single-atom alloy Ru 1 Co NP catalyst.
Haifeng QiYurou LiZhitong ZhouYueqiang CaoFei LiuWeixiang GuanLeiLei ZhangXiao Yan LiuLin LiYang SuKathrin JungeXuezhi DuanMatthias BellerAiqin WangTao ZhangPublished in: Nature communications (2023)
The sustainable production of value-added N-heterocycles from available biomass allows to reduce the reliance on fossil resources and creates possibilities for economically and ecologically improved synthesis of fine and bulk chemicals. Herein, we present a unique Ru 1 Co NP /HAP surface single-atom alloy (SSAA) catalyst, which enables a new type of transformation from the bio-based platform chemical furfural to give N-heterocyclic piperidine. In the presence of NH 3 and H 2 , the desired product is formed under mild conditions with a yield up to 93%. Kinetic studies show that the formation of piperidine proceeds via a series of reaction steps. Initially, in this cascade process, furfural amination to furfurylamine takes place, followed by hydrogenation to tetrahydrofurfurylamine (THFAM) and then ring rearrangement to piperidine. DFT calculations suggest that the Ru 1 Co NP SSAA structure facilitates the direct ring opening of THFAM resulting in 5-amino-1-pentanol which is quickly converted to piperidine. The value of the presented catalytic strategy is highlighted by the synthesis of an actual drug, alkylated piperidines, and pyridine.