Login / Signup

Characterization of a Linuron-Specific Amidohydrolase from the Newly Isolated Bacterium Sphingobium sp. Strain SMB.

Long ZhangQiang HuBin LiuFeng LiJian-Dong Jiang
Published in: Journal of agricultural and food chemistry (2020)
The phenylurea herbicide linuron is globally used and has caused considerable concern because it leads to environmental pollution. In this study, a highly efficient linuron-transforming strain Sphingobium sp. SMB was isolated, and a gene (lahB) responsible for the hydrolysis of linuron to 3,4-dichloroaniline and N,O-dimethylhydroxylamine was cloned from the genome of strain SMB. The lahB gene encodes an amidohydrolase, which shares 20-53% identity with other biochemically characterized amidohydrolases, except for the newly reported linuron hydrolase Phh (75%). The optimal conditions for the hydrolysis of linuron by LahB were determined to be pH 7.0 and 30 °C, and the Km value of LahB for linuron was 37.3 ± 1.2 μM. Although LahB and Phh shared relatively high identity, LahB exhibited a narrow substrate spectrum (specific for linuron) compared to Phh (active for linuron, diuron, chlortoluron, etc.). Sequence analysis and site-directed mutagenesis revealed that Ala261 of Phh was the key amino acid residue affecting the substrate specificity. Our study provides a new amidohydrolase for the specific hydrolysis of linuron.
Keyphrases
  • amino acid
  • highly efficient
  • genome wide
  • risk assessment
  • gene expression
  • copy number
  • climate change
  • structural basis
  • health risk assessment
  • air pollution