Distribution, abundance, population structures, and potential impacts of the invasive snail, Tarebia granifera in aquatic ecosystems of north-eastern South Africa.
Ruan GerberJohannes J PearsonVictor WepenerWynand MalherbeLizaan de NeckerPublished in: Ecology and evolution (2024)
Aquatic ecosystems globally have been invaded by molluscs. Tarebia granifera is a highly successful invader, often becoming the dominant aquatic invertebrate species in an invaded ecosystem. Resultingly, it has been suggested that T. granifera may have severe negative impacts on these invaded ecosystems. Limited information is available regarding the population structures and densities of T. granifera , particularly in invaded countries such as South Africa, and information on this could assist in developing management and control strategies for this invasive species. The present study aimed to assess the current distribution, densities, and population structures of T. granifera in invaded habitats on the Limpopo and Phongolo River systems in South Africa. This was accomplished by collecting aquatic molluscs from sites across these systems. Water quality parameters were measured at each site and water samples were collected for chemical nutrient analyses. The density of snails was determined for each site and the population size and structure as well as birth rate was calculated for T. granifera. Tarebia granifera was found to be the dominant molluscan species in habitats where it was present and all size classes from newborn to mature adults were found throughout at some of the highest densities globally. Worryingly, native molluscan species, were often absent or in much lower densities than reported in literature at sites where T. granifera was present, suggesting a negative effect on the native molluscan density and diversity. Contrary to most previous studies, there were no significant correlations between T. granifera and the selected water quality parameters. Higher densities and newborn recruitment of T. granifera were observed in the spring than in autumn, likely in response to shifts in environmental conditions. This study provides crucial insights into the population structure, densities, and impacts of T. granifera in invaded habitats, particularly for relatively newly invaded regions such as southern Africa.