Yu-Shiba-Rusinov bands in ferromagnetic superconducting diamond.
Gufei ZhangTomas SamuelyNaoya IwaharaJozef KačmarčíkChangan WangPaul W MayJohanna K JochumOleksandr OnufriienkoPavol SzabóShengqiang ZhouPeter SamuelyVictor V MoshchalkovLiviu F ChibotaruHorst-Günter RubahnPublished in: Science advances (2020)
The combination of different exotic properties in materials paves the way for the emergence of their new potential applications. An example is the recently found coexistence of the mutually antagonistic ferromagnetism and superconductivity in hydrogenated boron-doped diamond, which promises to be an attractive system with which to explore unconventional physics. Here, we show the emergence of Yu-Shiba-Rusinov (YSR) bands with a spatial extent of tens of nanometers in ferromagnetic superconducting diamond using scanning tunneling spectroscopy. We demonstrate theoretically how a two-dimensional (2D) spin lattice at the surface of a three-dimensional (3D) superconductor gives rise to the YSR bands and how their density-of-states profile correlates with the spin lattice structure. The established strategy to realize new forms of the coexistence of ferromagnetism and superconductivity opens a way to engineer the unusual electronic states and also to design better-performing superconducting devices.