Login / Signup

Neural Implants Without Electronics: A Proof-of-Concept Study on a Human Skin Model.

Patrick KieleDavid BraigJakob WeisYara BaslanCristian PasluostaThomas Stieglitz
Published in: IEEE open journal of engineering in medicine and biology (2020)
Objective: Chronic neural implants require energy and signal supply. The objective of this work was to evaluate a multichannel transcutaneous coupling approach in an ex vivo split-concept study, which minimizes the invasiveness of such an implant by externalizing the processing electronics. Methods: Herein, the experimental work focused on the transcutaneous energy and signal transmission. The performance was discussed with widely evaluated concepts of neural interfaces in the literature. Results: The performance of the transcutaneous coupling approach increased with higher channel count and higher electrode pitches. Electrical crosstalk among channels was present, but acceptable for the stimulation of peripheral nerves. Conclusions: Transcutaneous coupling with extracorporeal transmitting arrays and subcutaneous counterparts provide a promising alternative to the inductive concept particularly when a fully integration of the system in a prosthetic shaft is intended. The relocation of the electronics can potentially prevent pressure sores, improve accessibility for maintenance and increase lifetime of the implant.
Keyphrases
  • soft tissue
  • room temperature
  • systematic review
  • peripheral blood
  • electron transfer
  • chemotherapy induced