Login / Signup

A general formulation of the quasiclassical trajectory method for reduced-dimensionality reaction dynamics calculations.

Tibor NagyAnna VikárGyörgy Lendvay
Published in: Physical chemistry chemical physics : PCCP (2018)
Dimension reduction by freezing the unimportant coordinates is widely used in intramolecular and reaction dynamics calculations when the solution of the accurate full-dimensional nuclear Schrödinger equation is not feasible. In this paper we report on a novel form of the exact classical internal-coordinate Hamiltonian for full and reduced-dimensional vibrational motion of polyatomic molecules with the purpose of using it in quasiclassical trajectory (QCT) calculations. The derivation is based on the internal to body-fixed frame transformation, as in the t-vector formalism, however it does not require the introduction of rotational variables to allow cancellation of non-physical rotations within the body-fixed frame. The formulas needed for QCT calculations: normal mode analysis and state sampling as well as for following the dynamics and normal-mode quantum number assignment at instantaneous states are presented. The procedure is demonstrated on the CH4, CD4, CH3D and CHD3 isotopologs of methane using three reduced-dimensional models, which were previously used in quantum reactive scattering studies of the CH4 + X → CH3 + HX type reactions. The reduced-dimensional QCT methodology formulated this way combined with full-dimensional QCT calculations makes possible the classical validation of reduced-dimensional models that are used in the quantum mechanical description of the nuclear dynamics in reactive systems [A. Vikár et al., J. Phys. Chem. A, 2016, 120, 5083-5093].
Keyphrases
  • density functional theory
  • molecular dynamics
  • monte carlo
  • molecular dynamics simulations
  • room temperature
  • mental health
  • high resolution
  • mass spectrometry
  • minimally invasive