Login / Signup

Creating chirality in the nearly two dimensions.

Hanyu ZhuBoris I Yakobson
Published in: Nature materials (2024)
Structural chirality, defined as the lack of mirror symmetry in materials' atomic structure, is only meaningful in three-dimensional space. Yet two-dimensional (2D) materials, despite their small thickness, can show chirality that enables prominent asymmetric optical, electrical and magnetic properties. In this Perspective, we first discuss the possible definition and mathematical description of '2D chiral materials', and the intriguing physics enabled by structural chirality in van der Waals 2D homobilayers and heterostructures, such as circular dichroism, chiral plasmons and the nonlinear Hall effect. We then summarize the recent experimental progress and approaches to induce and control structural chirality in 2D materials from monolayers to superlattices. Finally, we postulate a few unique opportunities offered by 2D chiral materials, the synthesis and new properties of which can potentially lead to chiral optoelectronic devices and possibly materials for enantioselective photochemistry.
Keyphrases
  • capillary electrophoresis
  • ionic liquid
  • high resolution
  • optical coherence tomography
  • mass spectrometry
  • room temperature