Login / Signup

Ballistic transport spectroscopy of spin-orbit-coupled bands in monolayer graphene on WSe 2 .

Qing RaoWun-Hao KangHongxia XueZiqing YeXuemeng FengKenji WatanabeTakashi TaniguchiNing WangMing-Hao LiuDong-Keun Ki
Published in: Nature communications (2023)
Van der Waals interactions with transition metal dichalcogenides were shown to induce strong spin-orbit coupling (SOC) in graphene, offering great promises to combine large experimental flexibility of graphene with unique tuning capabilities of the SOC. Here, we probe SOC-driven band splitting and electron dynamics in graphene on WSe 2 by measuring ballistic transverse magnetic focusing. We found a clear splitting in the first focusing peak whose evolution in charge density and magnetic field is well reproduced by calculations using the SOC strength of ~ 13 meV, and no splitting in the second peak that indicates stronger Rashba SOC. Possible suppression of electron-electron scatterings was found in temperature dependence measurement. Further, we found that Shubnikov-de Haas oscillations exhibit a weaker band splitting, suggesting that it probes different electron dynamics, calling for a new theory. Our study demonstrates an interesting possibility to exploit ballistic electron motion pronounced in graphene for emerging spin-orbitronics.
Keyphrases