Login / Signup

Discovery of a Potent and Selective Covalent Inhibitor of Bruton's Tyrosine Kinase with Oral Anti-Inflammatory Activity.

Mark S TichenorJohn J M WienerNavin L RaoCharlotte Pooley DeckhutJ Kent BarbayKevin D KreutterGenesis M BacaniJianmei WeiLeon ChangHeather E MurreyWeixue WangKay AhnMichael HuberElizabeth RexKevin J CoeJieJun WuMark J SeierstadScott D BembenekKristi A LeonardAlec D LebsackJennifer D VenableJames P Edwards
Published in: ACS medicinal chemistry letters (2021)
Bruton's tyrosine kinase (BTK) is a cytoplasmic tyrosine kinase that plays a critical role in the activation of B cells, macrophages, and osteoclasts. Given the key role of these cell types in the pathology of autoimmune disorders, BTK inhibitors have the potential to improve treatment outcomes in multiple diseases. Herein, we report the discovery and characterization of a novel potent and selective covalent 4-oxo-4,5-dihydro-3H-1-thia-3,5,8-triazaacenaphthylene-2-carboxamide BTK inhibitor chemotype. Compound 27 irreversibly inhibits BTK by targeting a noncatalytic cysteine residue (Cys481) for covalent bond formation. Compound 27 is characterized by selectivity for BTK, potent in vivo BTK occupancy that is sustained after it is cleared from systemic circulation, and dose-dependent efficacy at reducing joint inflammation in a rat collagen-induced arthritis model.
Keyphrases
  • tyrosine kinase
  • epidermal growth factor receptor
  • oxidative stress
  • small molecule
  • anti inflammatory
  • high throughput
  • rheumatoid arthritis
  • single cell
  • cell therapy
  • high glucose
  • endothelial cells
  • structural basis