Login / Signup

Artificial intelligence to predict individualized outcome of acute ischemic stroke patients: The SIBILLA project.

Pietro CaliandroJacopo LenkowiczGiuseppe RealeSimone ScaringiAurelia ZauliChristian UcchedduSimone Fabiole-NicolettoStefano PatarnelloAndrea DamianiLuca TagliaferriIacopo ValenteMarco MociMauro MonforteVincenzo ValentiniPaolo Calabresi
Published in: European stroke journal (2024)
XGBoost reliably predicts individualized outcome in terms of NIHSS at discharge in the first 24 hours after stroke.
Keyphrases
  • artificial intelligence
  • acute ischemic stroke
  • machine learning
  • big data
  • ejection fraction
  • newly diagnosed
  • prognostic factors