Species variation in the hydrogen isotope composition of leaf cellulose is mostly driven by isotopic variation in leaf sucrose.
Meisha-Marika Holloway-PhillipsJochem BaanDaniel B NelsonMarco M LehmannGuillaume TcherkezAnsgar KahmenPublished in: Plant, cell & environment (2022)
Experimental approaches to isolate drivers of variation in the carbon-bound hydrogen isotope composition (δ 2 H) of plant cellulose are rare and current models are limited in their application. This is in part due to a lack in understanding of how 2 H-fractionations in carbohydrates differ between species. We analysed, for the first time, the δ 2 H of leaf sucrose along with the δ 2 H and δ 18 O of leaf cellulose and leaf and xylem water across seven herbaceous species and a starchless mutant of tobacco. The δ 2 H of sucrose explained 66% of the δ 2 H variation in cellulose (R 2 = 0.66), which was associated with species differences in the 2 H enrichment of sucrose above leaf water ( ε sucrose <math altimg="urn:x-wiley:01407791:media:pce14362:pce14362-math-0001" wiley:location="equation/pce14362-math-0001.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mtext>\unicode{x003B5}</mtext><mtext>sucrose</mtext></msub></mrow></math> : -126% to -192‰) rather than by variation in leaf water δ 2 H itself. ε sucrose <math altimg="urn:x-wiley:01407791:media:pce14362:pce14362-math-0002" wiley:location="equation/pce14362-math-0002.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mtext>\unicode{x003B5}</mtext><mtext>sucrose</mtext></msub></mrow></math> was positively related to dark respiration (R 2 = 0.27), and isotopic exchange of hydrogen in sugars was positively related to the turnover time of carbohydrates (R 2 = 0.38), but only when ε sucrose <math altimg="urn:x-wiley:01407791:media:pce14362:pce14362-math-0003" wiley:location="equation/pce14362-math-0003.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi mathvariant="normal">\unicode{x003B5}</mi><mtext>sucrose</mtext></msub></mrow></mrow></math> was fixed to the literature accepted value of - 171 <math altimg="urn:x-wiley:01407791:media:pce14362:pce14362-math-0004" wiley:location="equation/pce14362-math-0004.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mo>\unicode{x02212}</mo><mn>171</mn></mrow></mrow></math> ‰. No relation was found between isotopic exchange of hydrogen and oxygen, suggesting large differences in the processes shaping post-photosynthetic fractionation between elements. Our results strongly advocate that for robust applications of the leaf cellulose hydrogen isotope model, parameterization utilizing δ 2 H of sugars is needed.
Keyphrases