Login / Signup

Detection and Analysis of RNA Ribose 2'-O-Methylations: Challenges and Solutions.

Yuri MotorinVirginie Marchand
Published in: Genes (2018)
Ribose 2'-O-methylation is certainly one of the most common RNA modifications found in almost any type of cellular RNA. It decorates transfer RNAs (tRNAs), ribosomal RNAs (rRNAs), small nuclear RNAs (snRNAs) (and most probably small nucleolar RNAs, snoRNAs), as well as regulatory RNAs like microRNAs (miRNAs) and Piwi-interacting RNAs (piRNAs), and finally, eukaryotic messenger RNAs (mRNAs). Due to this exceptional widespread of RNA 2'-O-methylation, considerable efforts were made in order to precisely map these numerous modifications. Extensive studies of RNA 2'-O-methylation were also stimulated by the discovery of C/D-box snoRNA-guided machinery, which insures site-specific modification of hundreds 2'-O-methylated residues in archaeal and eukaryotic rRNAs and some other RNAs. In this brief review we discussed both traditional approaches of RNA biochemistry and also modern deep sequencing-based methods, used for detection/mapping and quantification of RNA 2'-O-methylations.
Keyphrases
  • dna methylation
  • nucleic acid
  • genome wide
  • transcription factor
  • high resolution
  • gene expression
  • mass spectrometry
  • single cell
  • label free
  • sensitive detection