Login / Signup

A closely spaced two-port MIMO antenna with a radiation null for out-of-band suppressions for 5G Sub-6 GHz applications.

Syed Naheel Raza RizviMd Abu SufianWahaj Abbas AwanYoung ChoiNiamat HussainNam Kim
Published in: PloS one (2024)
This paper presents the design and isolation enhancement of a filtering MIMO antenna with a radiation null for out-of-band suppressions suited for 5G sub-6 GHz communications. The MIMO antenna offers -10 dB impedance bandwidth functionality at the most prominent partial spectrum of the 5G NR n78 band for enabling wireless applications in base stations, ranging from 3.4 GHz to 3.61 GHz. To mitigate the redundancy of an RF filter and to achieve a strong filtering response, a radiation null is produced in the gain with four identical rectangular slots, which results in a significant gain drop of more than 8 dBi at the stopband. The geometrical design also allows 30 percent size reduction of single element. Subsequently, a closely spaced (0.11λ0) two-port MIMO antenna is implemented and with the utilization of the proposed rectangular shaped hollow stub parasitic element, the interelement isolation is significantly improved by more than 8 dB over the operational frequency range while retaining the filtering without any additional RF structure. The design simplification, peak gain of 5.4 dBi, near ideal response of diversity gain, ECC less than 0.03, congruency between simulated and measured results, and stable parameters make it a valuable choice for 3.5 GHz sub-6 GHz communications.
Keyphrases
  • energy transfer
  • radiation induced
  • computed tomography
  • magnetic resonance
  • radiation therapy
  • high resolution
  • minimally invasive
  • molecularly imprinted