Expanded Inverse-Sandwich Complexes of Lanthanum Borides: La2B10- and La2B11.
Zhi-Yu JiangTeng-Teng ChenWei-Jia ChenWan-Lu LiJun LiLai-Sheng WangPublished in: The journal of physical chemistry. A (2021)
Inverse-sandwich structures have been observed recently for dilanthanide boride clusters, in which two Ln atoms sandwich a monocyclic Bx ring for x = 7-9. An interesting question is if larger Bx rings are possible to form such inverse-sandwich clusters. Here we address this question by investigating La2B10- and La2B11- using photoelectron spectroscopy and ab initio quantum chemical calculations. Photoelectron spectra of La2B10- and La2B11- show complicated, but well-resolved, spectral features that are used to compare with theoretical calculations. We have found that global minimum structures of the two clusters are based on the octa-boron ring. The global minimum of La2B10- consists of two chiral enantiomers with C1 symmetry, which can be viewed as adding a B2 unit off-plane to the B8 ring, whereas that of La2B11- can be viewed as adding a B3 unit in-plane to the B8 ring in a second coordination shell. Chemical bonding analyses reveal localized B-B bonds on the edge of the clusters and delocalized bonds in the expanded boron frameworks. The interactions between the La atoms and the boron frameworks include the unique (d-p)δ bonding, which was found to be the key for inverse-sandwich complexes with monocyclic boron rings. The current study confirms that the largest monocyclic boron ring to form the inverse-sandwich structures is B9 and provide insights into the structural evolutions of larger lanthanide boride clusters.