The intense metabolism of cancer cells leads to hypoxia and lack of crucial nutrients in the tumor microenvironment, which hinders the function of immune cells. We designed a biomimetic immune metabolic nanoplatform, in which a type I aggregation-induced emission photosensitizer and a glutamine antagonist are encapsulated into a cancer cell membrane for achieving specific delivery in vivo . This approach greatly satisfies the glucose and glutamine required by T cells, significantly improves the tumor hypoxic environment, enables the reprogramming of tumor and immune cell metabolism, induces immunogenic cell death, promotes dendritic cell maturation, and effectively inhibits tumor proliferation. Strong tumor-specific immune responses are further triggered, and the tumor immune-suppressing microenvironment is modulated, by decreasing the number of immunosuppressive cells. Moreover, subsequent combination with anti-PD-1 is able to generate strong abscopal effects to prevent tumor distant metastasis and provide long-term immune memory against tumor recurrence.