Recognizing the Differentiation Degree of Human Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium Cells Using Machine Learning and Deep Learning-Based Approaches.
Chung-Yueh LienTseng-Tse ChenEn-Tung TsaiYu-Jer HsiaoNi LeeChong-En GaoYi-Ping YangShih-Jen ChenAliaksandr A YarmishynDe-Kuang HwangShih-Jie ChouWoei-Chyn ChuShih-Hwa ChiouYueh ChienPublished in: Cells (2023)
Induced pluripotent stem cells (iPSCs) can be differentiated into mesenchymal stem cells (iPSC-MSCs), retinal ganglion cells (iPSC-RGCs), and retinal pigmental epithelium cells (iPSC-RPEs) to meet the demand of regeneration medicine. Since the production of iPSCs and iPSC-derived cell lineages generally requires massive and time-consuming laboratory work, artificial intelligence (AI)-assisted approach that can facilitate the cell classification and recognize the cell differentiation degree is of critical demand. In this study, we propose the multi-slice tensor model, a modified convolutional neural network (CNN) designed to classify iPSC-derived cells and evaluate the differentiation efficiency of iPSC-RPEs. We removed the fully connected layers and projected the features using principle component analysis (PCA), and subsequently classified iPSC-RPEs according to various differentiation degree. With the assistance of the support vector machine (SVM), this model further showed capabilities to classify iPSCs, iPSC-MSCs, iPSC-RPEs, and iPSC-RGCs with an accuracy of 97.8%. In addition, the proposed model accurately recognized the differentiation of iPSC-RPEs and showed the potential to identify the candidate cells with ideal features and simultaneously exclude cells with immature/abnormal phenotypes. This rapid screening/classification system may facilitate the translation of iPSC-based technologies into clinical uses, such as cell transplantation therapy.
Keyphrases
- induced pluripotent stem cells
- induced apoptosis
- deep learning
- artificial intelligence
- mesenchymal stem cells
- cell cycle arrest
- convolutional neural network
- machine learning
- stem cells
- single cell
- cell therapy
- cell death
- oxidative stress
- computed tomography
- umbilical cord
- climate change
- diabetic retinopathy
- signaling pathway
- bone marrow
- cell proliferation
- replacement therapy