Metabolic Modeling and Bidirectional Culturing of Two Gut Microbes Reveal Cross-Feeding Interactions and Protective Effects on Intestinal Cells.
Belén HirmasNaschla GasalyGuillermo OrellanaMarco Vega-SagardíaPedro SaaMartín GottelandDaniel GarridoPublished in: mSystems (2022)
The gut microbiota is constituted by thousands of microbial interactions, some of which correspond to the exchange of metabolic by-products or cross-feeding. Inulin and xylan are two major dietary polysaccharides that are fermented by members of the human gut microbiota, resulting in different metabolic profiles. Here, we integrated community modeling and bidirectional culturing assays to study the metabolic interactions between two gut microbes, Phocaeicola dorei and Lachnoclostridium symbiosum, growing in inulin or xylan, and how they provide a protective effect in cultured cells. P. dorei (previously belonging to the Bacteroides genus) was able to consume inulin and xylan, while L. symposium only used certain inulin fractions to produce butyrate as a major end product. Constrained-based flux simulations of refined genome-scale metabolic models of both microbes predicted high lactate and succinate cross-feeding fluxes between P. dorei and L. symbiosum when growing in each fiber. Bidirectional culture assays in both substrates revealed that L. symbiosum growth increased in the presence of P. dorei . Carbohydrate consumption analyses showed a faster carbohydrate consumption in cocultures compared to monocultures. Lactate and succinate concentrations in bidirectional cocultures were lower than in monocultures, pointing to cross-feeding as initially suggested by the model. Butyrate concentrations were similar across all conditions. Finally, supernatants from both bacteria cultured in xylan in bioreactors significantly reduced tumor necrosis factor-α-induced inflammation in HT-29 cells and exerted a protective effect against the TcdB toxin in Caco-2 epithelial cells. Surprisingly, this effect was not observed in inulin cocultures. Overall, these results highlight the predictive value of metabolic models integrated with microbial culture assays for probing microbial interactions in the gut microbiota. They also provide an example of how metabolic exchange could lead to potential beneficial effects in the host. IMPORTANCE Microbial interactions represent the inner connections in the gut microbiome. By integrating mathematical modeling tools and microbial bidirectional culturing, we determined how two gut commensals engage in the exchange of cross-feeding metabolites, lactate and succinate, for increased growth in two fibers. These interactions underpinned butyrate production in cocultures, resulting in a significant reduction in cellular inflammation and protection against microbial toxins when applied to cellular models.