Login / Signup

N-Acetylcysteine and Safranal prevented the brain damage induced by hyperthyroidism in adult male rats.

Asmaa S ShahatWafaa A HassanWael M El-Sayed
Published in: Nutritional neuroscience (2020)
Background: Hyperthyroidism is associated with impairment in the neurotransmission and severe tissue damage in the brain. The present study explored the potential deleterious effects of experimentally-induced hyperthyroidism on the neurotransmitters, oxidative homeostasis, apoptosis and DNA fragmentation in cerebral cortex, thalamus & hypothalamus, and hippocampus in rats.Methods and Results: The ameliorative effects of N-acetylcysteine (NAC; 50 mg/kg, oral) and safranal (50 mg/kg, intraperitoneal) against hyperthyroidism (L-T4 500 µg/kg, subcutaneous) were investigated. All treatments continued daily over three weeks. Hyperthyroidism was manifested by significant elevations in serum fT3 and fT4 levels and a decline in serum TSH level and body weight. It was also characterized by significant elevations in the levels of dopamine, serotonin, and 5-hydroxyindole acetic acid, and monoamine oxidase activity to varying degrees in the brain regions examined and a significant reduction in norepinephrine in hippocampus only. Hyperthyroidism resulted in a significant oxidative stress in brain typified by elevations in malondialdehyde and nitric oxide content and reductions in glutathione level and SOD and catalase activities. This led to elevations in Caspases 9 and 3 and a reduction in Bcl2 resulting in DNA damage and confirmed by the histopathology of brain tissue. The administration of NAC or safranal with L-T4 prevented these deleterious effects by reducing the oxidative load and improving the brain antioxidant status.Conclusions: Hyperthyroidism disrupted the neurotransmitters in the brain which aggravated the oxidative stress and resulted in apoptosis. N-Acetylcysteine and safranal prevented these deleterious effects by enhancing the poor antioxidant milieu of the brain.
Keyphrases