Login / Signup

Water-Soluble Trifunctional Binder for Sulfur Cathodes for Lithium-Sulfur Battery.

Yajun YangJuncheng QiuLei CaiCanbin LiuShuxing WuXiujuan WeiDong LuoBingkai ZhangXulai YangKwun Nam HuiJing LiuZhan Lin
Published in: ACS applied materials & interfaces (2021)
Conventional polymer binder in a lithium-sulfur (Li-S) battery, poly(vinylidene fluoride) (PVDF), suffers from insufficient ion conductivity, poor polysulfide-trapping ability, weak mechanical property, and requirement of organic solvents, which significantly encumber the industrial application of Li-S battery. Herein, a water-soluble binder with trifunctions, covalently cross-linked quaternary ammonium cationic starch (c-QACS), is developed to confront these issues. Similar to the poly(ethylene oxide) solid electrolytes, the c-QACS binder remarkably improves Li+ ion transfer capacity. The abundant O actives endow the c-QACS binder with admirable lithium polysulfide-trapping capability to retard the shuttle effect. In addition, the formed 3D network effectively maintains the electrode integrity during cycling. Benefiting from the above merits, the sulfur cathode with the c-QACS binder demonstrates a performance improvement of 300 and 150% compared with sulfur cathode with PVDF and bulk QACS binder after 100 cycles at 0.2C.
Keyphrases
  • solid state
  • water soluble
  • ion batteries
  • ionic liquid
  • reduced graphene oxide
  • drinking water
  • wastewater treatment
  • gold nanoparticles
  • solar cells