Login / Signup

Structuring Nonlinear Wavefront Emitted from Monolayer Transition-Metal Dichalcogenides.

Xuanmiao HongGuangwei HuWenchao ZhaoKai WangShang SunRui ZhuJing WuWeiwei LiuKian Ping LohAndrew Thye Shen WeeBing WangAndrea AlùCheng-Wei QiuPeixiang Lu
Published in: Research (Washington, D.C.) (2020)
The growing demand for tailored nonlinearity calls for a structure with unusual phase discontinuity that allows the realization of nonlinear optical chirality, holographic imaging, and nonlinear wavefront control. Transition-metal dichalcogenide (TMDC) monolayers offer giant optical nonlinearity within a few-angstrom thickness, but limitations in optical absorption and domain size impose restriction on wavefront control of nonlinear emissions using classical light sources. In contrast, noble metal-based plasmonic nanosieves support giant field enhancements and precise nonlinear phase control, with hundred-nanometer pixel-level resolution; however, they suffer from intrinsically weak nonlinear susceptibility. Here, we report a multifunctional nonlinear interface by integrating TMDC monolayers with plasmonic nanosieves, yielding drastically different nonlinear functionalities that cannot be accessed by either constituent. Such a hybrid nonlinear interface allows second-harmonic (SH) orbital angular momentum (OAM) generation, beam steering, versatile polarization control, and holograms, with an effective SH nonlinearity χ (2) of ~25 nm/V. This designer platform synergizes the TMDC monolayer and plasmonic nanosieves to empower tunable geometric phases and large field enhancement, paving the way toward multifunctional and ultracompact nonlinear optical devices.
Keyphrases