Login / Signup

It Is a Trap!: The Effect of Self-Healing of Surface Defects on the Excited States of CdSe Nanocrystals.

Alexandra R McIsaacTamar GoldzakTroy Van Voorhis
Published in: The journal of physical chemistry letters (2023)
Colloidal semiconductor nanocrystals have attracted much interest due to their unique optical properties, with applications ranging from displays to biomedical imaging. Nanocrystal optical properties depend on the structure of the surface, where defects can lead to traps. CdSe nanocrystals undergo surface reorganization, or self-healing, to eliminate defects, removing midgap traps from the band structure. However, the effect of this process on the optical spectrum is not well studied. Here, we show that self-healing not only eliminates midgap traps from the band structure but also brightens the spectrum and causes the excitonic states to emerge as the dominant features, in agreement with experimental annealing studies. We find that self-healing can lead to new traps like bonded Se-Se or Cd-Cd dimers, and their behavior is different from that of undercoordinated atom traps. These results suggest that eliminating traps requires a balance of allowing enough surface reorganization to eliminate undercoordinated atoms, but not so much that dimeric traps form.
Keyphrases
  • room temperature
  • high resolution
  • quantum dots
  • energy transfer
  • molecular dynamics
  • mass spectrometry
  • ionic liquid