Probing Dipole-Bound States Using Photodetachment Spectroscopy and Resonant Photoelectron Imaging of Cryogenically Cooled Anions.
Yue-Rou ZhangDao-Fu YuanLai-Sheng WangPublished in: The journal of physical chemistry letters (2023)
Molecular anions with polar neutral cores can support highly diffuse dipole-bound states below their detachment thresholds due to the long-range charge-dipole interaction. Such nonvalence states constitute a special class of excited electronic states for anions and were observed in early photodetachment experiments to measure the electron affinities of organic radicals. Recent experimental advances, in particular, the ability to create cold anions using a cryogenically cooled Paul trap, have allowed the investigation of dipole-bound excited states at a new level. For the first time, the zero-point level of dipole-bound excited states can be observed via resonant two-photon detachment, and resonant photoelectron spectroscopy can be performed via the above-threshold vibrational levels (Feshbach resonances) of the dipole-bound states. This Perspective describes recent progress in the investigation of dipole-bound states in the authors' lab using an electrospray photoelectron spectroscopy apparatus equipped with a cryogenically cooled Paul trap and high-resolution photoelectron imaging.