Fundamental Relation for Gas of Interacting Particles in a Heat Flow.
Robert HołystKarol MakuchKonrad GiżyńskiAnna MaciołekPaweł J ŻukPublished in: Entropy (Basel, Switzerland) (2023)
There is a long-standing question of whether it is possible to extend the formalism of equilibrium thermodynamics to the case of nonequilibrium systems in steady-states. We have made such an extension for an ideal gas in a heat flow. Here, we investigated whether such a description exists for the system with interactions: the van der Waals gas in a heat flow. We introduced a steady-state fundamental relation and the parameters of state, each associated with a single way of changing energy. The first law of nonequilibrium thermodynamics follows from these parameters. The internal energy U for the nonequilibrium states has the same form as in equilibrium thermodynamics. For the van der Waals gas, U(S*,V,N,a*,b*) is a function of only five parameters of state (irrespective of the number of parameters characterizing the boundary conditions): the effective entropy S*, volume V , number of particles N , and rescaled van der Waals parameters a*, b*. The state parameters, a*, b*, together with S*, determine the net heat exchange with the environment. The net heat differential does not have an integrating factor. As in equilibrium thermodynamics, the steady-state fundamental equation also leads to the thermodynamic Maxwell relations for measurable steady-state properties.